
R Boot Camp (Juneau 2017) Handouts Graphs 1 - 1

Unit 2: Visualizing Data
Data should ALWAYS be plotted FIRST – before you do anything else! All statistics software,
including R, will very happily run analyses on your data whether it makes sense or not. You are
responsible for figuring out what makes sense and the only way to do that is through exploring
the data. The easiest and best way to do this is by visualizing the data in some way.
There are three major graphing methods in R: base graphics (no package required), lattice
graphics, and ggplot2 (both are packages that must be installed and loaded). Lattice is a
package that allows more complicated layouts of multivariate data, but we will not talk about it
further here. The package ggplot2 is gaining in popularity and we will also touch on how to
graph using this package.

Graphic devices
The plot area in RStudio is frequently inadequate and also frustrating if you are needing to
change your pane sizes frequently. You can remedy this by putting your plot in its own,
separate window. R refers to these windows (or as we'll see later, a file type you wish to plot
to) as 'graphic devices'. To start a device you simply use the appropriate function with the
arguments width and height to indicate size. This is one of the only places where the function
name depends on whether you are using a Mac or a PC. On a Mac computer the function is
quartz(). On a Windows machine, the function is windows().

Another key piece of information before we start: remember the command graphics.off()
This function takes no arguments. It sets your graphing parameters back to default values.
Whenever you are doing graphs with modifications you will want to use this command at the
beginning the set of code to draw your graph. But also try using it anytime you find your
graphs are not what you expect.

Base Graphics
There are three types of plotting commands in base graphics:

1. High-level – create new plots
2. Low-level – add more information to existing plots (e.g. points, lines, text)

3. Interactive – interactively add or subtract information from plots.

High-level Graph Functions
plot() – one of most frequently used plotting functions in R
The plot() function has may different type options:
Use type=

R Boot Camp (Juneau 2017) Handouts Graphs 1 - 2

• "p" for points,
• "l" for lines,
• "b" for both,
• "c" for the lines part alone of "b",

• "o" for both ‘overplotted’,
• "h" for ‘histogram’ like (or ‘high-

density’) vertical lines,
• "n" for no plotting.

For this overview of graphs, we'll use the data called "abalone.csv"

Plot 1 variable
Scatter plot

plot(abalone$length)

Histogram
hist(abalone$length)

Plot 2 Variables
Scatter plot

plot(abalone$rings, abalone$whole.wt) or
plot(abalone$whole.wt ~ abalone$rings)

R Boot Camp (Juneau 2017) Handouts Graphs 1 - 3

Box plot
boxplot(abalone$length ~ abalone$rings)

Bar chart

For the bar chart we'll use mean length values for each ring number; we can calculate these numbers
easily from our original dataset, but for now, you can use the prepared dataset.
barplot(females$mean.length),
names.arg=females$rings, ylab="Mean
Length")

Dot chart
 dotchart(females$mean.length, labels =
females$rings)

5 6 7 8 9 11 13 15 17 19 21 23 25 29

M
ea

n
Le

ng
th

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
29

0.4 0.5 0.6 0.7

1 3 5 7 9 11 13 15 17 19 21 23 25 27

0.
2

0.
4

0.
6

0.
8

R Boot Camp (Juneau 2017) Handouts Graphs 1 - 4

Generic Functions

Some functions in R are what is called ‘generic functions’. The output of these functions depend
on the class of the first argument (those things in brackets after the function name) you provide.
plot() is one such function and a good way to really get a feel for what this means. Test it out
for yourself – the plot you get will depend on what type of data you give the function.

Note that if we give plot() data of class ‘factor’ as an x-variable, plot automatically produces a
boxplot. We can force it back into a scatter plot, using the function as.numeric() to modify our
x variable:

e.g., plot(abalone$length ~ abalone$sex)

versus plot(abalone$length ~ as.numeric(abalone$sex))

R Boot Camp (Juneau 2017) Handouts Graphs 1 - 5

Low-level Plotting Functions (Modifying Existing Plots)
When it comes to fully customizing graphs, you will use these a lot, as the best way to customize
your figure is to plot each element separately. Each of these functions only works after you’ve
used one of the high-level plotting functions.

1. Add titles: title()

plot(abalone$rings, abalone$whole.wt, ann = FALSE)
title(main = "Abalone Age Estimate from Size", xlab = "Age (Number of
Rings)" ylab = ("Length (mm)"))

2. Add more data points: points()
points(abalone$rings, abalone$shell.wt,pch=2, col="red") #plot a second set
of points on the same x,y scale; customize symbols and colour

0 5 10 15 20 25 30

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Abalone Age Estimate from Size

Age (Number of Rings)

M
as

s
(m

g)

0 5 10 15 20 25 30

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Abalone Age Estimate from Size

Age (Number of Rings)

M
as

s
(m

g)

R Boot Camp (Juneau 2017) Handouts Graphs 1 - 6

3. Add legend: legend()
plot(abalone$rings, abalone$whole.wt, ann = FALSE, pch=0, col="blue", ylim

= c(0, 4)) #change y-axis to make room for legend
title(main = "Abalone Age Estimate from Size", xlab = "Age (Number of

Rings)", ylab = ("Mass (mg)"))
points(abalone$rings, abalone$shell.wt, pch = 2, col = "red")
legend("topleft", legend=c("Whole weight (mg)", "Shell weight (mg)"),

pch=c(0,2), col=c("blue","red")) # draw legend to identify different
points

4. Add another axis: axis() add axis to plot;
placement of axis on plot is coded as 1 (bottom), 2 (left), 3 (top), 4 (right)
plot(abalone$rings, abalone$whole.wt)
par(new = TRUE)
plot(abalone$rings, abalone$shell.wt,

pch = 2, col = "red", ann = FALSE,
axes = FALSE)

axis(4)
mtext("Shell weight",4, line=2)

for mtext, give it the side and how
many lines out on that side you want to
place text (line=0 will print it right at
the axis line)

0 5 10 15 20 25 30

0
1

2
3

4

Abalone Age Estimate from Size

Age (Number of Rings)

M
as

s
(m

g)

Whole weight (mg)
Shell weight (mg)

0 5 10 15 20 25 30

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

abalone$rings

ab
al
on
e$
w
ho
le
.w
t

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
he

ll
w

ei
gh

t

R Boot Camp (Juneau 2017) Handouts Graphs 1 - 7

5. Add lines:
a. lines() - connect points
b. segments() – add a straight line between two points; takes values (x0,y0,x1,y1) to draw

line from (x0,y0) to (x1,y1)
c. abline() – add straight line; takes intercept & slope of line; use h=value for horizontal line

at y=value and v=value for vertical line at x=value
d. arrows() - this function draws arrows between pairs of points. You will use it often as it

works to add in error bars. We'll come back to that in the next section.
e.g. abline(v=mean(abalone$rings),col="blue",lwd=4)

To plot line of best fit:
 Use either

abline(lm(y~x)) OR
curve(intercept + b*x, add=TRUE) # curve is high-level plotting functio

6. Add text: text() – add text in plotting area; mtext() – add text to one of the margins (as we

saw above in #4).
mtext("Shell Weight", side = 4, line = 3)

The trick with adding text to your graph is remembering that text coordinates are always in the
same units as the graph axes. Use the graph axes to identify where you wish to place text.

0 5 10 15 20 25 30

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

abalone$rings

ab
al
on
e$
w
ho
le
.w
t

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
he

ll
w

ei
gh

t

R Boot Camp (Juneau 2017) Handouts Graphs 1 - 8

Interactive Plotting Functions
A handy interactive plotting function that you are likely to use is identify().

This function lets you use your mouse to click on a point (or several points) on a graph have it
labelled.

Customizing Plots: Graphical Parameters

par() – use this command with no arguments to see what the global settings are for your
graphical parameters. Also get used to looking this up in the help regularly, as it spells
out all the possible parameter options there.

There are many, many graphical parameters. Some you will set separately, using the par()
function and sending arguments to it, others you will add in as arguments to some other
functions.

e.g. Suppose you want to put 4 plots on a single page (in a single window) – you can do this by
giving the par() option mfrow a matrix: par(mfrow = c(2,2)) before using your plot()
commands

e.g. Alternatively, when you are customizing the plotting symbol (‘pch’ option in par()) you
are likely to put it specifically into the function points(). If you set it both globally
(outside of any other function) and within a function, the value within the function will
override the global value for that instance only.

We will spend much more time talking about these in a future session of the workshop!

par() options that can be used directly in plot():
ann = (annotation); TRUE (include plot annotations) or FALSE (do not include)
cex = (relative size of text and symbols); default =1, takes a number
col = (plotting colour); R accepts color names, html color codes

Use colors() to get info on built-in R colors.
font = (font style); 1 = plain, 2 = bold, 3 = italic, 4 = bold italic
las = (text direction); 0 = always parallel to axis, 1 = always horizontal, 2 = always

perpendicular to axis , 3 = always vertical
lty = (line type); 0 = blank, 1 = solid, 2 = dashed, 3 = dotted, 4 = dotdash, etc.
lwd = (line width); default = 1, takes a number
mar = (margins); takes a vector of 4 numbers - c(bottom, left, top, right) - indicating the size

of margins (in lines)
pch = (symbol type); use ?pch to get info on which numbers of this argument give which

symbol

R Boot Camp (Juneau 2017) Handouts Graphs 1 - 9

Practice. Spend some time playing around with some of these. Load the airquality data, using
data(airquality).

1. Create a new variable in the data set that will let you plot ozone over time & make this
plot.

2. Add lines to the plot.
3. Add temperature to the plot, using a second axis with its own scale.
4. Put the temperature axis on the right-hand side of the plot and label it.
5. Re-plot showing temperature only as a line plot, with the line coloured red.

ggplot2
A graphics package based on the principles of a grammar of graphics – principles or rules that
we can apply to plots, analogous to the grammar rules of a language.
This is a flexible graphing package that makes it easier to produce good plots without having to
program every single detail. But I think in the end that is a little less flexible than base graphics.

Using ggplot2 does require a bit of a mental shift in the way you think about making plots,
including getting familiar with some terminology:

• Data – what we want to visualize; for ggplot() data must be in a data.frame in a long format
• Geoms – geometric objects that represent data such as points, bars, lines
• Aesthetics –visual properties of geoms, e.g (x,y) position, symbol
• Scales – scaling of graph aesthetics
• Mappings – connect data values to aesthetic

You can get more information about using ggplot2 from the website: ggplot.org

An even better source of help for learning gglplot2 is the book R Graphics Cookbook; see the
website: www.cookbook-r.com/Graphs/

We’ll use the same data as above with the base graphics to produce the same types of plots using
ggplot2.

Plot histogram
ggplot(abalone, aes(x=length)) +
geom_histogram()

0

100

200

300

400

0.2 0.4 0.6 0.8
length

co
un
t

R Boot Camp (Juneau 2017) Handouts Graphs 1 - 10

Plot density curve
ggplot(abalone, aes(x=length)) + stat_density()

While this code may seem very awkward at first,
one of the benefits can be seen immediately in the ability to assign ggplot() output to an object
that is then easily modified, e.g.

p <- ggplot(abalone, aes(x=length))
p + geom_histogram() # to produce histogram
p + stat_density() # to produce density plot

Plot 2 Variables

Scatterplot
 ggplot(abalone, aes(x = rings, y = whole.wt)) + geom_point()

0

1

2

0 10 20 30
rings

w
ho
le
.w
t

0

1

2

3

0.2 0.4 0.6 0.8
length

de
ns
ity

R Boot Camp (Juneau 2017) Handouts Graphs 1 - 11

Boxplot
p <- ggplot(abalone,(aes(x = as.factor(rings, y = length)))
p + geom_boxplot()

Force scatter plot

p + geom_point()

Practice 2. Let’s practice putting together some of the tools we’ve learned. Start by creating a
dataframe.

dat <- data.frame(“xval” = 1:4, “yval” = c(3,5,6,9),
“group”=c("A","B","A","B"))

1. Use ggplot() to plot points.
2. Plot points so each group has its own color.

