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Standard Statistical Tests 

Basic Standard Statistics:  Comparing Groups 

We’ll use the frogs dataset (a larger version of the examp data we used yesterday) to run 
through the functions R provides for classical statistics tests. 

Variance Ratio Test (Fisher’s F test) 
We can easily compare the variance between two groups using an F-test.  This would not be hard 
to do by ‘hand’, but there is a built-in function for it called var.test(). 

groupA <- frog$svl[frog$trtmt == "A"] # create vector of treatment A svl 
data 

groupB <- frog$svl[frog$trtmt == "B"] # create vector of treatment B svl 
data 

var.test(groupA,groupB) # test for difference in variance 

t-test 

There is a function called t.test().  It has the form: 
t.test (v1, v2)  where v1 and v2 are vectors of data to be compared; y is optional – if you 

submit only x, than a one-sample t-test is done comparing the mean of the sample to zero (by 
default) or to a value you specify with the argument mu=value.  For a paired t-test, use the 
argument paired = TRUE. 

An alternative (and perhaps more intuitive) form for the function is: 

t.test(y ~ x) where y is a numerical response variable and x is a grouping variable.  We can 
optionally include the argument data = to specify a data.frame containing x and y. 

Thus, for frogs data, we can test for an effect of treatment (ignoring species effects), using the 
code: 

t.test(mass ~ trtmt, data=frogs) 

 

If you want a non-parametric Mann-Whitney U test, the code is nearly identical, but using the 
function wilcox.test(y ~ x) 

Correlation and Regression 
cor(x,y) is the function for a simply correlation.  Passing a matrix to cor() instead of two 
vectors will give you a matrix of all pairwise correlation coefficients 

lm() is probably one of the most commonly used functions in R; it stands for linear model and 
accepts a formula for analyzing continuous response variables. 
Given a single x- and y-variable, lm() will perform a simple linear regression and output the 
coefficients a and b, the intercept and slope of the line of best fit (least-squares estimate). 
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Using the frogs dataset again, we might perform a regression of mass on svl in the data: 
mod.lm <- lm(mass ~ svl, data=frogs) # note that we save the results to an 

object 
summary(mod.lm)  # To get complete output of the regression results, 

including coefficient estimates and R2 value 
anova(mod.lm)    # To get the anova table output of the regression 

ANOVA 

The command for doing an ANOVA is aov();  lm() will also work since the aov() function in 
fact calls lm().  
aov(formula, data) 

formula syntax:   

y ~ A  # a one-way ANOVA 
y ~ A + B # a two-way ANOVA testing main effects only 
y ~ A*B # a two-way ANOVA testing main effects and all possible 

interactions 
y ~ A + B + A:B # a two-way ANOVA testing main effects A, B and interaction A:B 
 

Be Sure to Know what your Analysis is Actually Doing! 

Note that aov() performs a sequential ANOVA (in SAS terms, a Type I SS); this means that if 
your data are unbalanced, the order in which you enter the terms matters!  The package car will 
calculate Type II and Type III SS ANOVA tables for model objects produced by aov(), lm(), 
glm(), lmer() and others. 

 

Let’s continue on with analyzing our frogsle data set and analyze the species effect. 

mod1 <- aov(svl ~ spp + trtmt, data=frogs) # perform anova and save to object 
‘mod1’ 

First, we need to see if the model is appropriate by looking at the diagnostic plots.  

plot(mod1) # to get default 4 diagnostic plots 

plot(mod1, which = c(1,2)) # get just the residuals & qqplot 

The car package provides a variety of diagnostic tools, including a qqplot with 95% confidence 
envelope for the normal line: 

library(car) 

qqPlot(lm(svl~spp*treatment, data=frogs)) # qqPlot needs output from lm(); you’ll be 
working with lm() in the next session, the model results are identical using aov() and lm(). 

Another car package function is outlierTest(mod1) – this will indicate whether there are any 
significant outliers in your data. 
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Given the model seems appropriate, let’s now look at the results.  The summary() function gives 
us the standard ANOVA table output. 

Here’s 

 a screenshot of summary(mod1): 

 

As we have a significant interaction, we likely want to start interpreting the data by making an 
interaction plot. 
with (frogs, interaction.plot(spp, treatment, svl, ylab = "Snout-vent 

Length", xlab = "Species", trace.label = "Treatment")) 

Seeing these significant results, the next step is to look at how the factors are affecting the data 
by looking at effect sizes.  There are (again) many ways we can do this. 
model.tables(mod1, se=TRUE) provides the effect sizes for each factor level, as well as 

standard errors. 
model.tables(mod1, “mean”, se=TRUE) provides the means for each level in each factor. 

plot.design(svl ~ spp:treatment, data=frogs) provides a plot summarizing effect 
sizes. 

summary.lm(mod1) summarizes the model in terms of model coefficients. 

The effect sizes given depend on the contrasts option.  The default in R is treatment contrasts 
(contr.treatment) for unordered factors and orthogonal polynomial contrasts (contr.poly) for 
ordered factors.  In treatment contrasts each level of the factor is compared to the first level (i.e. 
the first level in the factor is used as the reference; not that unless you order your factor levels, 
this will be the first in alphabetical order). You can change the contrasts using the argument 
contrasts= in the function call, or in your session using the options(contrasts=) command. 

Multiple comparisons for significant differences among treatment level combinations can be 
generated with the command:  TukeyHSD(mod1). 

If you want to do planned contrasts you can use the contrasts() function.  You use this function to 
set the contrast matrices that R should use for a particular factor.  You will need to know how to 
set up planned contrasts by coding the matrix values. 
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For example, if we wanted to compare toads with the other 4 species (regardless of treatment) we 
can change the contrast matrix for the factor spp by using: 

contrasts(frogs$spp) <- cbind("toads vs everything else"= c(4,-1,-1,-1,-1)) 

If we want to compare treatmentA in bullfrog & wood_frog with treatment A in grays_treefrog 
& spring_peeper we need to first create a factor that represents our interaction. 

frogs$intvar <- frogs$treatment:frogs$spp  # create factor that tests interaction 

contrasts(frogs$intvar) <- cbind("A Ranids vs A Hylids" = c(0,1,1,-1,-
1,0,0,0,0,0))  # Now set coding for the interaction factor 

mod.cont <- aov(svl ~ spp+treatment+intvar, data=frogs)  # run this model 

summary(mod.cont, split = list(intvar = list('A Ranids vs A Hylids' = 1), spp 
= list('toads vs. rest' = 1)))  # modify our summary output to include the new 
contrasts we’ve created as components of the appropriate factors 
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Nested ANOVA 

When our factors are nested within one another, the appropriate error term for the F-ratio 
changes.  Split-plot designs are a common experimental design where fixed factors are nested. 
Consider data from on experiment on the effects of irrigation 
and sowing density on crop yields (this data set comes from 
Crawley 2007).  The study design use four fields (block), 
each of which was divided in half, with one side irrigated 
and the other side not.  The irrigation plots were then 
divided into 3 levels of sowing density and finally each of 
these was divided into 3 levels of fertilizer treatment.  An 
example of the layout is shown below; 4 such blocks were 
run, with all treatments assigned at random within each level 
of the next higher factor. 
We indicate the nested nature of the data by using the Error 
term in our formula statement: 
mod.yields <- aov(yield ~ 

irrigation*density*fertilizer + Error(block/irrigation/density), 
data=yields) 

summary(mod.yields) 

Look carefully at the output and you will notice that there are 4 ANOVA tables, starting with the 
largest level, block (there is no test for block because we have no replication at this level).  The 
irrigation factor is next and it is tested using block:irrigation as the error term; density and 
irrigation:density effects are both tested using error = block:irrigation:density.  Finally, fertilizer 
(and associated interaction) effects are tested using the within factor error term. 
 

Multivariate Analysis of Variance 
If we have multiple response variables we need to create a matrix of the response variables and 
use that matrix in the formula we send to aov().  (Below I use the trick as before of creating a 
matrix of y variables right inside the formula.)  Using the function manova() provides us the 
appropriate summary method. 
We’ll try this out using the frogs data set again.  Recall that those data had measures of mass and 
svl (snout-vent length) for each individual.  Since we have measured both mass and svl on the 
same individuals (hypothetically), we clearly cannot consider them independent and it would not 
be appropriate to test the two responses as independent. 
mult.mod <- manova(cbind(frogs$svl, frogs$mass) ~ spp*treatment, data=frogs) 

summary(mult.mod) 

summary.aov(mult.mod) #this will give you univariate tests 

library(car)  # the function Anova() in the car package provides more information from the 
analysis 

summary(Anova(mult.mod)) 

N P N+P 

P N+P 

N P N+P 

N 

Irrigated Not Irrigated 

low sowing 
density 

med. sowing 
density 

high sowing 
density 

1 Block 



R Boot Camp (Juneau 2017) Handouts Stat Tests - 6 

The consistent results of all four estimators of significant effects in the MANOVA are 
encouraging in suggesting that the model result is robust, we should nonetheless look at some 
diagnostics.   
 

Residual plot:  to do this, we pull out the residuals and fitted values from mult.mod and plot them 
(the plot() function for a MANOVA model does not yet exist). 
plot(y=mult.mod$resid, x=mult.mod$fitted) 

 
Multivariate normality:  the package mvnormtest provides an extension of the Shapiro test to 
assess multivariate normality 
library(“mvnormtest”) 

ymat <- t(as.matrix(cbind(frogs$svl, frogs$mass))) # t() is transpose 
mshapiro.test(ymat) 

 

Given the assumptions the data violate, we can consider using the function adonis() in the vegan 
package to do a robust MANOVA.  This function uses permutation tests and thus does not 
depend on the data matching a multivariate normal distribution. 
library(“vegan”) 

mod.rob <- adonis(cbind(frogs$svl, frogs$mass) ~ spp*treatment, data=frogs)  
# adonis() requires the response variables be in matrix format  

mod.rob 

mod.rob$model.matrix 

mod.rob$coefficients 
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Generalized Linear Models 

These are the models we need if we have categorical (or otherwise nowhere near normally 
distributed) response variables.  This occurs commonly with biological data, where the response 
is often in the form of presence/absence, alive/dead, brood size, etc. 

To see how these models work, we will return to the turtle data we’ve been using.  We’d like to 
model nest predation as a function of the season in which the nest is laid.  One would imagine 
that this might also vary with year, so we will include year in the model also.   

Logistic Regression 

Nest depredation is binary data; nests were scored either as depredated (1) or not (0).  This type 
of data can be modelled with a logistic regression, transforming the response using logit(y) and a 
binomial error distribution. 
In R, generalized linear models are run with the function glm(). [Current or former SAS users 
beware!  In SAS, PROC GLM is a general linear model (the equivalent of R’s lm) and the 
switched notation is bound to drive you nuts for a while.]  Here’s the syntax for the turtle model 
described above: 
glm(predation ~ season*year, family=”binomial”, data=turtles)  

summary(mod.full) 

anova(mod.full) 

anova(mod.full, test='Chisq') 

 

Binomial Response Variables 

For the binomial model you have several options for the form of your response (y) variable.  It 
can be a numerical variable of zeroes and ones (as we have here).  You can also use a factor with 
two levels (success, failure).  Finally it can be a matrix of number of successes and total number. 

 
The appropriate way to test whether a particular variable included in the model is significant is to 
run a series of nested models.  In this way you can remove one factor at a time and then compare 
the models to determine whether model fit is significantly improved with the additional factor.  If 
it is now, we conclude that that factor was not a significant term in the model.  We continue to 
simplify our model in this way until we find that removing a term does generate a model 
significantly different from the previous model.  Significant difference in nested model can be 
assessed using the anova() function.  
mod1 <- glm(predation~ season + year, family=binomial, data=turtles) 

anova(mod1,mod.full, test='Chi') 

 

mod2 <- glm(predation~ year, family=binomial, data=turtles) 

anova(mod2, mod1, test='Chisq') 
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mod.min <- glm(predation ~ 1, family=binomial, data=turtles) 

anova(mod.min, mod2, test='Chisq') 

 

Poisson Regression 

When we have count data, we use the Poisson distribution and the log link to model data.  This is 
done identically to the logistic regression – we need only change the family option. 

 
pr.mod <- glm(clutch.size ~ year*season*sw.veg, family = poisson, 
data=turtles) 

summary(pr.mod) 

anova(pr.mod, test='Chisq') 

 
pr.mod1 <- glm(clutch.size ~ year*season, family=poisson, data=turtles) 

anova(pr.mod1,pr.mod, test='Chisq') 

 

 

Generalized Linear Mixed Models 

If we have a non-normal response variable and both random and fixed independent factors then 
we use a generalized linear mixed model.  As with general linear mixed models, these are fit in R 
with the function lmer() from the package lme4. 
 

Longitudinal Data (Repeated Measures) Example 
  (from Douglas Bates, author of package lme4)  
library(lme4) 

library(lattice) 

## plot data  (xyplot requires package lattice – should be already loaded as part of base R) 
print(xyplot(Reaction ~ Days | Subject, sleepstudy, aspect = "xy", layout = 

c(6,3), type = c("g", "p", "r"), index.cond = function(x,y) coef(lm(y ~ 
x))[1], xlab = "Days of sleep deprivation", ylab = "Average reaction time 
(ms)")) 

xtabs(~ Subject + Days, sleepstudy)  # check balance of design 
 

 
Use lmer to estimate model that has days as fixed effect and subject as random effect 
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(fit1 <- lmer(Reaction ~ 1 + Days + (1 + Days|Subject), sleepstudy, REML = 
0)) # this is the full model with intercept and slope estimate for each 
subject; 'Days | Subject' indicates that days are repeated measures  

 

We might now ask, is it true that the change in response time with sleep deprivation differs 
among individuals in slope, or is it that the change is similar among all subjects and it is only that 
subjects differ in intercept (their starting reaction time).  To do this we want to fit a model that 
does not allow slope to vary among subjects.  Non-intuitively we do this by adding subject as 
random effect on its own to estimate subject intercepts and then adding 0 to our 'Days | Subject' 
no intercept is estimated here (we cannot estimate the intercept twice!) 
(fit2 <- lmer(Reaction ~ 1 + Days + (1|Subject) + (0+Days|Subject), 
sleepstudy, REML = 0)) 

 
anova(fit2, fit1)  


