
R Boot Camp (Juneau 2017) Handouts Stat Tests - 1

Standard Statistical Tests

Basic Standard Statistics: Comparing Groups

We’ll use the frogs dataset (a larger version of the examp data we used yesterday) to run
through the functions R provides for classical statistics tests.

Variance Ratio Test (Fisher’s F test)
We can easily compare the variance between two groups using an F-test. This would not be hard
to do by ‘hand’, but there is a built-in function for it called var.test().

groupA <- frog$svl[frog$trtmt == "A"] # create vector of treatment A svl
data

groupB <- frog$svl[frog$trtmt == "B"] # create vector of treatment B svl
data

var.test(groupA,groupB) # test for difference in variance

t-test

There is a function called t.test(). It has the form:
t.test (v1, v2) where v1 and v2 are vectors of data to be compared; y is optional – if you

submit only x, than a one-sample t-test is done comparing the mean of the sample to zero (by
default) or to a value you specify with the argument mu=value. For a paired t-test, use the
argument paired = TRUE.

An alternative (and perhaps more intuitive) form for the function is:

t.test(y ~ x) where y is a numerical response variable and x is a grouping variable. We can
optionally include the argument data = to specify a data.frame containing x and y.

Thus, for frogs data, we can test for an effect of treatment (ignoring species effects), using the
code:

t.test(mass ~ trtmt, data=frogs)

If you want a non-parametric Mann-Whitney U test, the code is nearly identical, but using the
function wilcox.test(y ~ x)

Correlation and Regression
cor(x,y) is the function for a simply correlation. Passing a matrix to cor() instead of two
vectors will give you a matrix of all pairwise correlation coefficients

lm() is probably one of the most commonly used functions in R; it stands for linear model and
accepts a formula for analyzing continuous response variables.
Given a single x- and y-variable, lm() will perform a simple linear regression and output the
coefficients a and b, the intercept and slope of the line of best fit (least-squares estimate).

R Boot Camp (Juneau 2017) Handouts Stat Tests - 2

Using the frogs dataset again, we might perform a regression of mass on svl in the data:
mod.lm <- lm(mass ~ svl, data=frogs) # note that we save the results to an

object
summary(mod.lm) # To get complete output of the regression results,

including coefficient estimates and R2 value
anova(mod.lm) # To get the anova table output of the regression

ANOVA

The command for doing an ANOVA is aov(); lm() will also work since the aov() function in
fact calls lm().
aov(formula, data)

formula syntax:

y ~ A # a one-way ANOVA
y ~ A + B # a two-way ANOVA testing main effects only
y ~ A*B # a two-way ANOVA testing main effects and all possible

interactions
y ~ A + B + A:B # a two-way ANOVA testing main effects A, B and interaction A:B

Be Sure to Know what your Analysis is Actually Doing!

Note that aov() performs a sequential ANOVA (in SAS terms, a Type I SS); this means that if
your data are unbalanced, the order in which you enter the terms matters! The package car will
calculate Type II and Type III SS ANOVA tables for model objects produced by aov(), lm(),
glm(), lmer() and others.

Let’s continue on with analyzing our frogsle data set and analyze the species effect.

mod1 <- aov(svl ~ spp + trtmt, data=frogs) # perform anova and save to object
‘mod1’

First, we need to see if the model is appropriate by looking at the diagnostic plots.

plot(mod1) # to get default 4 diagnostic plots

plot(mod1, which = c(1,2)) # get just the residuals & qqplot

The car package provides a variety of diagnostic tools, including a qqplot with 95% confidence
envelope for the normal line:

library(car)

qqPlot(lm(svl~spp*treatment, data=frogs)) # qqPlot needs output from lm(); you’ll be
working with lm() in the next session, the model results are identical using aov() and lm().

Another car package function is outlierTest(mod1) – this will indicate whether there are any
significant outliers in your data.

R Boot Camp (Juneau 2017) Handouts Stat Tests - 3

Given the model seems appropriate, let’s now look at the results. The summary() function gives
us the standard ANOVA table output.

Here’s

 a screenshot of summary(mod1):

As we have a significant interaction, we likely want to start interpreting the data by making an
interaction plot.
with (frogs, interaction.plot(spp, treatment, svl, ylab = "Snout-vent

Length", xlab = "Species", trace.label = "Treatment"))

Seeing these significant results, the next step is to look at how the factors are affecting the data
by looking at effect sizes. There are (again) many ways we can do this.
model.tables(mod1, se=TRUE) provides the effect sizes for each factor level, as well as

standard errors.
model.tables(mod1, “mean”, se=TRUE) provides the means for each level in each factor.

plot.design(svl ~ spp:treatment, data=frogs) provides a plot summarizing effect
sizes.

summary.lm(mod1) summarizes the model in terms of model coefficients.

The effect sizes given depend on the contrasts option. The default in R is treatment contrasts
(contr.treatment) for unordered factors and orthogonal polynomial contrasts (contr.poly) for
ordered factors. In treatment contrasts each level of the factor is compared to the first level (i.e.
the first level in the factor is used as the reference; not that unless you order your factor levels,
this will be the first in alphabetical order). You can change the contrasts using the argument
contrasts= in the function call, or in your session using the options(contrasts=) command.

Multiple comparisons for significant differences among treatment level combinations can be
generated with the command: TukeyHSD(mod1).

If you want to do planned contrasts you can use the contrasts() function. You use this function to
set the contrast matrices that R should use for a particular factor. You will need to know how to
set up planned contrasts by coding the matrix values.

R Boot Camp (Juneau 2017) Handouts Stat Tests - 4

For example, if we wanted to compare toads with the other 4 species (regardless of treatment) we
can change the contrast matrix for the factor spp by using:

contrasts(frogs$spp) <- cbind("toads vs everything else"= c(4,-1,-1,-1,-1))

If we want to compare treatmentA in bullfrog & wood_frog with treatment A in grays_treefrog
& spring_peeper we need to first create a factor that represents our interaction.

frogs$intvar <- frogs$treatment:frogs$spp # create factor that tests interaction

contrasts(frogs$intvar) <- cbind("A Ranids vs A Hylids" = c(0,1,1,-1,-
1,0,0,0,0,0)) # Now set coding for the interaction factor

mod.cont <- aov(svl ~ spp+treatment+intvar, data=frogs) # run this model

summary(mod.cont, split = list(intvar = list('A Ranids vs A Hylids' = 1), spp
= list('toads vs. rest' = 1))) # modify our summary output to include the new
contrasts we’ve created as components of the appropriate factors

R Boot Camp (Juneau 2017) Handouts Stat Tests - 5

Nested ANOVA

When our factors are nested within one another, the appropriate error term for the F-ratio
changes. Split-plot designs are a common experimental design where fixed factors are nested.
Consider data from on experiment on the effects of irrigation
and sowing density on crop yields (this data set comes from
Crawley 2007). The study design use four fields (block),
each of which was divided in half, with one side irrigated
and the other side not. The irrigation plots were then
divided into 3 levels of sowing density and finally each of
these was divided into 3 levels of fertilizer treatment. An
example of the layout is shown below; 4 such blocks were
run, with all treatments assigned at random within each level
of the next higher factor.
We indicate the nested nature of the data by using the Error
term in our formula statement:
mod.yields <- aov(yield ~

irrigation*density*fertilizer + Error(block/irrigation/density),
data=yields)

summary(mod.yields)

Look carefully at the output and you will notice that there are 4 ANOVA tables, starting with the
largest level, block (there is no test for block because we have no replication at this level). The
irrigation factor is next and it is tested using block:irrigation as the error term; density and
irrigation:density effects are both tested using error = block:irrigation:density. Finally, fertilizer
(and associated interaction) effects are tested using the within factor error term.

Multivariate Analysis of Variance
If we have multiple response variables we need to create a matrix of the response variables and
use that matrix in the formula we send to aov(). (Below I use the trick as before of creating a
matrix of y variables right inside the formula.) Using the function manova() provides us the
appropriate summary method.
We’ll try this out using the frogs data set again. Recall that those data had measures of mass and
svl (snout-vent length) for each individual. Since we have measured both mass and svl on the
same individuals (hypothetically), we clearly cannot consider them independent and it would not
be appropriate to test the two responses as independent.
mult.mod <- manova(cbind(frogs$svl, frogs$mass) ~ spp*treatment, data=frogs)

summary(mult.mod)

summary.aov(mult.mod) #this will give you univariate tests

library(car) # the function Anova() in the car package provides more information from the
analysis

summary(Anova(mult.mod))

N P N+P

P N+P

N P N+P

N

Irrigated Not Irrigated

low sowing
density

med. sowing
density

high sowing
density

1 Block

R Boot Camp (Juneau 2017) Handouts Stat Tests - 6

The consistent results of all four estimators of significant effects in the MANOVA are
encouraging in suggesting that the model result is robust, we should nonetheless look at some
diagnostics.

Residual plot: to do this, we pull out the residuals and fitted values from mult.mod and plot them
(the plot() function for a MANOVA model does not yet exist).
plot(y=mult.mod$resid, x=mult.mod$fitted)

Multivariate normality: the package mvnormtest provides an extension of the Shapiro test to
assess multivariate normality
library(“mvnormtest”)

ymat <- t(as.matrix(cbind(frogs$svl, frogs$mass))) # t() is transpose
mshapiro.test(ymat)

Given the assumptions the data violate, we can consider using the function adonis() in the vegan
package to do a robust MANOVA. This function uses permutation tests and thus does not
depend on the data matching a multivariate normal distribution.
library(“vegan”)

mod.rob <- adonis(cbind(frogs$svl, frogs$mass) ~ spp*treatment, data=frogs)
adonis() requires the response variables be in matrix format

mod.rob

mod.rob$model.matrix

mod.rob$coefficients

R Boot Camp (Juneau 2017) Handouts Stat Tests - 7

Generalized Linear Models

These are the models we need if we have categorical (or otherwise nowhere near normally
distributed) response variables. This occurs commonly with biological data, where the response
is often in the form of presence/absence, alive/dead, brood size, etc.

To see how these models work, we will return to the turtle data we’ve been using. We’d like to
model nest predation as a function of the season in which the nest is laid. One would imagine
that this might also vary with year, so we will include year in the model also.

Logistic Regression

Nest depredation is binary data; nests were scored either as depredated (1) or not (0). This type
of data can be modelled with a logistic regression, transforming the response using logit(y) and a
binomial error distribution.
In R, generalized linear models are run with the function glm(). [Current or former SAS users
beware! In SAS, PROC GLM is a general linear model (the equivalent of R’s lm) and the
switched notation is bound to drive you nuts for a while.] Here’s the syntax for the turtle model
described above:
glm(predation ~ season*year, family=”binomial”, data=turtles)

summary(mod.full)

anova(mod.full)

anova(mod.full, test='Chisq')

Binomial Response Variables

For the binomial model you have several options for the form of your response (y) variable. It
can be a numerical variable of zeroes and ones (as we have here). You can also use a factor with
two levels (success, failure). Finally it can be a matrix of number of successes and total number.

The appropriate way to test whether a particular variable included in the model is significant is to
run a series of nested models. In this way you can remove one factor at a time and then compare
the models to determine whether model fit is significantly improved with the additional factor. If
it is now, we conclude that that factor was not a significant term in the model. We continue to
simplify our model in this way until we find that removing a term does generate a model
significantly different from the previous model. Significant difference in nested model can be
assessed using the anova() function.
mod1 <- glm(predation~ season + year, family=binomial, data=turtles)

anova(mod1,mod.full, test='Chi')

mod2 <- glm(predation~ year, family=binomial, data=turtles)

anova(mod2, mod1, test='Chisq')

R Boot Camp (Juneau 2017) Handouts Stat Tests - 8

mod.min <- glm(predation ~ 1, family=binomial, data=turtles)

anova(mod.min, mod2, test='Chisq')

Poisson Regression

When we have count data, we use the Poisson distribution and the log link to model data. This is
done identically to the logistic regression – we need only change the family option.

pr.mod <- glm(clutch.size ~ year*season*sw.veg, family = poisson,
data=turtles)

summary(pr.mod)

anova(pr.mod, test='Chisq')

pr.mod1 <- glm(clutch.size ~ year*season, family=poisson, data=turtles)

anova(pr.mod1,pr.mod, test='Chisq')

Generalized Linear Mixed Models

If we have a non-normal response variable and both random and fixed independent factors then
we use a generalized linear mixed model. As with general linear mixed models, these are fit in R
with the function lmer() from the package lme4.

Longitudinal Data (Repeated Measures) Example
 (from Douglas Bates, author of package lme4)
library(lme4)

library(lattice)

plot data (xyplot requires package lattice – should be already loaded as part of base R)
print(xyplot(Reaction ~ Days | Subject, sleepstudy, aspect = "xy", layout =

c(6,3), type = c("g", "p", "r"), index.cond = function(x,y) coef(lm(y ~
x))[1], xlab = "Days of sleep deprivation", ylab = "Average reaction time
(ms)"))

xtabs(~ Subject + Days, sleepstudy) # check balance of design

Use lmer to estimate model that has days as fixed effect and subject as random effect

R Boot Camp (Juneau 2017) Handouts Stat Tests - 9

(fit1 <- lmer(Reaction ~ 1 + Days + (1 + Days|Subject), sleepstudy, REML =
0)) # this is the full model with intercept and slope estimate for each
subject; 'Days | Subject' indicates that days are repeated measures

We might now ask, is it true that the change in response time with sleep deprivation differs
among individuals in slope, or is it that the change is similar among all subjects and it is only that
subjects differ in intercept (their starting reaction time). To do this we want to fit a model that
does not allow slope to vary among subjects. Non-intuitively we do this by adding subject as
random effect on its own to estimate subject intercepts and then adding 0 to our 'Days | Subject'
no intercept is estimated here (we cannot estimate the intercept twice!)
(fit2 <- lmer(Reaction ~ 1 + Days + (1|Subject) + (0+Days|Subject),
sleepstudy, REML = 0))

anova(fit2, fit1)

