
R Cheat Sheet p. 1

R Cheat Sheet

As a general rule spaces in commands/code are completely ignored by R and thus do not matter
Use '#' at the beginning of a line to tell R to skip that line; use these to add comments to your source
file to document what your code is doing

objects:
• everything you want to save in R (have available to use within your workspace) is an object
• you must name an object at the time of creation
• objects could be: a vector of numbers, a vector of words, results from running a function (e.g.

aov()), or a data.frame
• a data.frame is the most common type of object you will use – it is a standard data set with a

individuals (sometimes called 'cases') in rows (only one individual per row) and variables in
columns (treatment category, response measure, etc.)

<- use this arrow symbol ('<' + '-') to create an object and its name; technically called a 'redirect'

symbol
e.g. var1 <- c(5,3,2,5) creates an object that is a vector is 4 values in it
*anytime you run a function that has a return value, it will print it to some output; if you provide
an object name, it will print it to that object; it you do not, it will use the 'standard ouput'
(stdout), which is the console window

$ use this to pull out variables from a data.frame; called 'string'
e.g. var1 <- my.data$var1 will create the vector 'var1' and put into it the same values that are in
var1 found in the data.frame called 'my.data'

[] use square brackets to indicate any item in a vector, any row or column in a matrix or data.frame
e.g. in the data.frame 'my.data', my.data[1,3] will return (give the value of) the item in row 1,
column 3; using my.data[1,] will give all the values (every column) in row 1, my.data[,3] will
give all the values (every row) in column 3

Frequently Used Functions in R
 Each of these functions requires an argument inside the parentheses that is the name of some

object that exists in your workspace

A brief note on functions. Functions are simply a saved collection of commands; you use the
function name to run those commands. Most functions require some objects – you indicate the
objects inside the parentheses that identify an name as a function. Most objects return some value
(an answer from running the commands); you can save this value to an object. If you do not, it
will simply print the output to your console screen.

e.g. my.function(object1, object2) {
 lines of code that are saved together to be executed when function called
 do something with object1
 do something with object2
 return some.value } **the curly braces enclose the function code

R Cheat Sheet p. 2

Now call the function, sending it object1 and object2 and asking it to save the returned some.value
to an object named result:
 result <- my.function(object1, object2)

Functions that bring your data into and out of R

read.csv() – read a comma-delimited file saved in your working directory; give filename in quotes as
argument; assign result of function to data frame object
e.g. my.data <- read.csv("myDataFile.csv")

write.csv() – write your data frame data to a comma-delimited file on your computer (in your
working directory); provide name of data.frame and a name for the file
e.g. write.csv(my.data, "outputFile.csv")

Functions that provide information about your object
str() – 'str' is an abbreviation for 'structure'; this will return (prints to screen by default) the type of

object and the kinds of data in the object
head() – returns the 'head' of the object = first 6 values (if vector) or lines (if matrix or data.frame)
tail() – returns the 'tail' of the object = last 6 values (if vector) or lines (if matrix or data.frame)
nrow() – returns the number of rows in a matrix or data.frame
length() – returns the number of items in a vector or the number of columns in a data.frame
names(my.df) – print the column names of the data.frame called 'my.df' that is in my workspace
names(my.2col.df) <- c("col1", "col2") – assign variable names 'col1' and 'col2' to the two columns

that make up the data.frame called 'my.2col.df' in my workspace

Functions that manipulate data

c() – combine values into a single vector
e.g. vector1 <- c(value1, value2, value3) – create a vector containing the values inside the
parentheses and assign it the object name 'vector1

data.frame() – put objects together into a data.frame (objects must have the same number of rows)
e.g. my.data.df <- c("factor1", "factor2", "data1", "data2")

cbind() – combine columns of data together into matrix (columns must have same number of rows)

rbind() – combine rows of data together (column names must match)
as.numeric() – change type of data in object to be 'numeric'

as.character() – change type of data in object to be 'character' (i.e. strings)
as.factor() – change type of data in object to be a factor; only available for objects (variables) within

a data frame; has unique characteristics and required for use as categorical factor in ANOVA
Elements of matrices and data.frames are identified using the form my.data[row, column]

my.data[row_numbers,] – return only rows indicated by 'row_numbers'; all columns included
because no value after comma

R Cheat Sheet p. 3

my.data[, col_numbers] – return only columns indicated by 'col_numbers'; all rows included because
no value before comma

my.data[row#, col#] – return value of element found at specific row (=row#) and column (=col#)

Using formula argument in a function

Many functions, including plot(), t.test(), aov(), lm() will take a formula as input

• a formula is something that occurs in the form: y ~ a + b

• e.g. To run an anova (aov function), you will have something in the form:
 anova.result <- aov(response ~ factor1 + factor2, data = my.data)

• An alternative is to use the '$' feature and the data.frame name:
 anova.result <- aov(my.data$response ~ my.data$factor1
 + my.data$factor2)

Summary Statistics

Any easy way to frequencies, means, etc. by grouping factors is to use the function aggregate()
• aggregate() takes as arguments

o the variable you wish to summarize (typically a variable (column) within a data.frame
o how you want the data to be subset, as a list of factor columns in your data.frame
o a function to carry out on each group; standard functions available are: mean, var (variance),

sd (standard deviation), sum, length (count of number in each group)

mean() – will take the mean value of numbers in object given to the function
var() – variance of values in object provided
sd() – standard deviation of objects provided
summary() – for numeric vector, returns minimum value, 1st quartile value, median, mean, 3rd

quartile value, and maximum value; for character vector returns length of vector, its
class and its mode

This symbol (called 'tilde') is typically
found on the key beside the '1' key on
your keyboard. It means 'varies with'.

This option is to tell R
where to find the
variables you've used
in your formula
statement.

